192
Bibliography
[179] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen
Blankevoort. Up or down? adaptive rounding for post-training quantization. In In-
ternational Conference on Machine Learning, pages 7197–7206. PMLR, 2020.
[180] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free
quantization through weight equalization and bias correction. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 1325–1334, 2019.
[181] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y
Ng. Reading digits in natural images with unsupervised feature learning. 2011.
[182] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Ma-
jumder, and Li Deng. Ms marco: A human generated machine reading comprehension
dataset. In CoCo@ NIPs, 2016.
[183] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet:
A generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.
[184] Nikunj C Oza and Stuart J Russell. Online bagging and boosting. In International
Workshop on Artificial Intelligence and Statistics, pages 229–236. PMLR, 2001.
[185] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch.
In Proceedings of the Advances in Neural Information
Processing Systems Workshops, pages 1–4, 2017.
[186] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. In Advances in Neural
Information Processing Systems, pages 8026–8037, 2019.
[187] KB Petersen, MS Pedersen, et al. The matrix cookbook. Technical University of
Denmark, 15, 2008.
[188] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and JeffDean. Efficient neural
architecture search via parameters sharing. In International conference on machine
learning, pages 4095–4104. PMLR, 2018.
[189] Hai Phan, Zechun Liu, Dang Huynh, Marios Savvides, Kwang-Ting Cheng, and
Zhiqiang Shen. Binarizing mobilenet via evolution-based searching. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
13420–13429, 2020.
[190] Gabriele Prato, Ella Charlaix, and Mehdi Rezagholizadeh.
Fully quantized trans-
former for machine translation. arXiv preprint arXiv:1910.10485, 2019.
[191] Juan C. P´erez, Motasem Alfarra, Guillaume Jeanneret, Adel Bibi, Ali Kassem Thabet,
Bernard Ghanem, and Pablo Arbel´aez. Robust gabor networks. arXiv, 2019.
[192] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning
on point sets for 3d classification and segmentation.
In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 652–660, 2017.
[193] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Proceedings of Advances
in Neural Information Processing Systems, pages 5099–5108, 2017.