192

Bibliography

[179] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen

Blankevoort. Up or down? adaptive rounding for post-training quantization. In In-

ternational Conference on Machine Learning, pages 7197–7206. PMLR, 2020.

[180] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free

quantization through weight equalization and bias correction. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 1325–1334, 2019.

[181] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y

Ng. Reading digits in natural images with unsupervised feature learning. 2011.

[182] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Ma-

jumder, and Li Deng. Ms marco: A human generated machine reading comprehension

dataset. In CoCo@ NIPs, 2016.

[183] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,

Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet:

A generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[184] Nikunj C Oza and Stuart J Russell. Online bagging and boosting. In International

Workshop on Artificial Intelligence and Statistics, pages 229–236. PMLR, 2001.

[185] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary

DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch.

In Proceedings of the Advances in Neural Information

Processing Systems Workshops, pages 1–4, 2017.

[186] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:

An imperative style, high-performance deep learning library. In Advances in Neural

Information Processing Systems, pages 8026–8037, 2019.

[187] KB Petersen, MS Pedersen, et al. The matrix cookbook. Technical University of

Denmark, 15, 2008.

[188] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and JeffDean. Efficient neural

architecture search via parameters sharing. In International conference on machine

learning, pages 4095–4104. PMLR, 2018.

[189] Hai Phan, Zechun Liu, Dang Huynh, Marios Savvides, Kwang-Ting Cheng, and

Zhiqiang Shen. Binarizing mobilenet via evolution-based searching. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

13420–13429, 2020.

[190] Gabriele Prato, Ella Charlaix, and Mehdi Rezagholizadeh.

Fully quantized trans-

former for machine translation. arXiv preprint arXiv:1910.10485, 2019.

[191] Juan C. P´erez, Motasem Alfarra, Guillaume Jeanneret, Adel Bibi, Ali Kassem Thabet,

Bernard Ghanem, and Pablo Arbel´aez. Robust gabor networks. arXiv, 2019.

[192] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning

on point sets for 3d classification and segmentation.

In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 652–660, 2017.

[193] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep

hierarchical feature learning on point sets in a metric space. In Proceedings of Advances

in Neural Information Processing Systems, pages 5099–5108, 2017.